
UNCLASSIFIED

 AD-E403 685

Technical Report ARWSE-TR-14024

ORDERED VERSUS UNORDERED MAP FOR PRIMITIVE DATA TYPES

Tom Nealis

September 2015

Approved for public release; distribution is unlimited.

AD

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND
ENGINEERING CENTER

Weapons and Software Engineering Center

Picatinny Arsenal, New Jersey

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially
available products or services does not constitute official endorsement by or
approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent
disclosure of its contents or reconstruction of the document. Do not return
to the originator.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

ORDERED VERSUS UNORDERED MAP FOR PRIMITIVE DATA
TYPES

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Tom Nealis

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, WSEC
Fire Control Systems & Technology Directorate
(RDAR-WSF-M)
Picatinny Arsenal, NJ 07806-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, ESIC
Knowledge & Process Management (RDAR-EIK)
Picatinny Arsenal, NJ 07806-5000

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Technical Report ARWSE-TR-14024
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 A map in programming is an associative container consisting of some key value mapped to some element.
C++ provides two types of map containers within the standard template library, the std::map and the
std::unordered_map classes. As the name implies, the containers main functional difference is that the
elements in the std::map are ordered by the key, and the std::unordered_map are not ordered based on their
key. The std::unordered_map elements are placed into “buckets” based on a hash value computed for their
key. This report will concentrate on the performance difference of these two containers using a primitive data
type for the key.

15. SUBJECT TERMS

std::map std::unordered_map

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

13

19a. NAME OF RESPONSIBLE PERSON

Tom Nealis
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area

code) (973) 724-8048
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

Approved for public release; distribution is unlimited.

i

CONTENTS
Page

Introduction 1

Methodology 1

Conclusions 7

Distribution List 9

UNCLASSIFIED

Approved for public release; distribution is unlimited.

1

INTRODUCTION

A map in computer science programming is an associative container consisting of a key
value mapped to some element. The C++ programming language provides two types of map
containers within the standard template library, the std::map and the std::unordered_map classes.
The main difference between these two containers is the way in which the elements are stored. In
the std::unordered_map, the elements are not stored in order by the key. The std::unordered_map
elements are placed into “buckets” based on a hash value computed for their key.

The underlying structure of a std::map is typically a binary search tree. The std::map is

thought to be generally slower than unordered maps but certainly have their use if ordered access is
necessary. The std::unordered_map is stored in a hash table. This allows for faster access to
elements based on a hash computation done on the key value. This computed value is then used to
look up the location of the element.

METHODOLOGY

In order to test the performance of these containers for comparison, a small program was

written to measure and then log the execution time of certain tasks involving the containers. The
main concentration was on some of the more common tasks such as inserting, finding, erasing, and
traversal. The following is the program written to accomplish this:

int _tmain(int argc, _TCHAR* argv[])
{
 LARGE_INTEGER frequency;
 QueryPerformanceFrequency(&frequency);

 LARGE_INTEGER starting_time, ending_time, elapsed_microseconds;

 srand(static_cast<unsigned int>(time(nullptr)));

 std::ofstream a_file("outfile.txt");

 std::map<unsigned int, unsigned int> ordered_map;
 std::unordered_map<unsigned int, unsigned int> unordered_map;

 std::vector<unsigned int> my_ints;
 std::vector<unsigned int> find_ints;
 auto intergers = 0u;
 for(auto j = 0u; j < 20; ++j)
 {
 intergers += 100000;

 //clear all vectors and arrays
 my_ints.clear();
 find_ints.clear();
 ordered_map.clear();
 unordered_map.clear();

 //populate vector
 for(auto i = 0u; i < intergers; ++i)
 my_ints.push_back(rand() % intergers);

UNCLASSIFIED

Approved for public release; distribution is unlimited.

2

 //add 10 elements to find
 for(auto i = 0; i < 10; ++i)
 find_ints.push_back(rand() % intergers);

 //populate ordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : my_ints)
 ordered_map.insert(std::pair<unsigned int, unsigned int>(j, j));

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto time_elapsed_ord_insert = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);
 //printf("Ordered Map Insert took: %4.2f microseconds\n", time_elapsed_ord_insert);

 //populate unordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : my_ints)
 unordered_map.insert(std::pair<unsigned int, unsigned int>(j, j));

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto time_elapsed_unordered_insert = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);
 //printf("Unordered Map Insert took: %4.2f microseconds\n", time_elapsed_unordered_insert);

 //find some ints in ordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : find_ints)
 auto it = ordered_map.find(j);

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto time_elapsed_ordered_find = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);
 //printf("Ordered Map Find took: %4.2f microseconds\n", time_elapsed_ordered_find);

 //find the same ints in unordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : find_ints)
 auto it = unordered_map.find(j);

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

UNCLASSIFIED

Approved for public release; distribution is unlimited.

3

 auto time_elapsed_unordered_find = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);
 //printf("Unordered Map Find took: %4.2f microseconds\n", time_elapsed_unordered_find);

 //erase some ints in ordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : find_ints)
 auto it = ordered_map.erase(j);

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto te_ordered_delete = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) /
frequency.QuadPart);

 //erase the same ints in unordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : find_ints)
 auto it = unordered_map.erase(j);

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto te_unordered_delete = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) /
frequency.QuadPart);

 //range ordered map
 QueryPerformanceCounter(&starting_time);

 auto it = ordered_map.begin();
 for(const auto &j : ordered_map)
 ;

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto te_ordered_range = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) /
frequency.QuadPart);

 //range unordered map
 QueryPerformanceCounter(&starting_time);

 for(const auto &j : unordered_map)
 ;

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 auto te_unordered_range = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) /
frequency.QuadPart);

UNCLASSIFIED

Approved for public release; distribution is unlimited.

4

 a_file << intergers << ",";
 a_file << time_elapsed_ord_insert << ",";
 a_file << time_elapsed_unordered_insert << ",";
 a_file << time_elapsed_ordered_find << ",";
 a_file << time_elapsed_unordered_find << ",";
 a_file << te_ordered_delete << ",";
 a_file << te_unordered_delete << ",";
 a_file << te_ordered_range << ",";
 a_file << te_unordered_range << "\r\n";//"\r\n";

 printf("Integers: %d \tOrdered Insert: %4.2f \tUnordered Insert: %4.2f\r\n", intergers,
time_elapsed_ord_insert, time_elapsed_unordered_insert);
 printf("Integers: %d \tOrdered Find : %4.2f \t Unordered Find : %4.2f\n", intergers,
time_elapsed_ordered_find, time_elapsed_unordered_find);
 printf("Integers: %d \tOrdered Erase : %4.2f \t Unordered Erase : %4.2f\n", intergers,
te_ordered_delete, te_unordered_delete);
 printf("Integers: %d \tOrdered Range : %4.2f \t Unordered Range : %4.2f\n", intergers,
te_ordered_range, te_unordered_range);
 }

 a_file.close();

 printf("All done!\n");

 //this stops the program in order to see data;
 //getchar();

 return 0;
}

This program first populates two standard vectors with random numbers. The first one stores
integers that will be inserted into the containers. The second one consists of 10 random numbers
used for finding values in the maps. The next step was to measure how long it took to insert all the
values into the containers. Then, the time it took to find all 10 values was recorded, and then the
time it took for the removal of all 10 of those values was recorded. Lastly, the traversal of the entire
map was timed. Figures 1 through 4 show the measurements that were logged.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

5

Figure 1
Map insert

Figure 2
Map find

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

0 500000 1000000 1500000 2000000 2500000

Ti
m

e
(u

s)

Amount of data

Map insert

Ordered Insert

Unordered Insert

0

20

40

60

80

100

120

140

160

0 500000 1000000 1500000 2000000 2500000

Ti
m

e
(u

s)

Amount of data

Map find

Ordered Find

Unordered Find

UNCLASSIFIED

Approved for public release; distribution is unlimited.

6

Figure 3
Map erase

Figure 4
Map range access

215

220

225

230

235

240

245

250

255

260

0 500000 1000000 1500000 2000000 2500000

Ti
m

e
(u

s)

Amount of data

Map erase

Ordered Erase

Unordered Erase

0

5000

10000

15000

20000

25000

30000

0 500000 1000000 1500000 2000000 2500000

Ti
m

e
(u

s)

Amount of data

Map range access

Ordered Range

Unordered Range

UNCLASSIFIED

Approved for public release; distribution is unlimited.

7

CONCLUSIONS

The std::unordered_map outperformed the std::map in all categories measured. If it is not
necessary to have the elements sorted, using the std::unordered_map class is suggested. Using the
std::unordered_map class will make your program faster and more efficient.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

9

DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-WSF-M, T. Nealis
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000
gidep@gidep.org

UNCLASSIFIED

Approved for public release; distribution is unlimited.

10

Patricia Alameda

Patricia Alameda

Andrew Pskowski

